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On_the velocity distribution of turbulent flow behind a

system ¢f thin cylindrical rods

By R. Gran Olsson*

1, Introduction., 1In an earlier paper the author has

treated the problem of the velocity distribution of turbulent
flow behind a system of rods spaced at equal distances from each
other [1]. For the shear stress of turbulent flow the expression
in terms of the mixing length due to L., Prandtl was assumed,

where the mixing length at a certain distance from the rods may

be put equal to a constant Lo [2). The velocity distribution was
given by a non-linear differential equation of the second order,

the solution of which can be expressed by quadrature, The purpose

of this note is to show, how a solution of the differential equa=-
tion can also be expressed in terms of the elliptic functions of

Weierstrass [3 ].

2, The differential equation., We consider a system
of cylindrical equidistant rods of infinite length in a plane

perpendiculer to the direction of flow in ¢ stream of originally
constant velocity., The problem is to calculate the distribution
of velocity in the region behind the rods by means of the ex-
pression of L, Prandtl for the shear stress in turbulent flow,
The mixing length will also be constant in a plane parallel to
the plane of the rods tecause of their uniform spacing.

The coordinate system may be chosen as follows:

The y-axis parallel to the plane of the rods and perpendicular

* Visiting Professor of Applied Mathematics at Brown University,
Providence, Rhode Icland.
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to their axss, the x-axis through the axis of one of the rods arnd
parallel to the direction of the undisturbed flow (Fig, 1). The
components of the velocity may be noted by u ard v, the velocity
of the undisturbed flow by U, Behind the rod system at & suf-
ficliently large distance the ccmponents of velocity are

u="U -~ ul; Vo= vy, (1)
where uy and vy are assumed to be small compared with U. In
establishing the equations of motion all terms of higher order
of magnitude are dropped; furthermore the pressure term is neg-
lected. This assumrption can be justified by means of the solu-
tion obtained.

The equation of motion in the x-direction is

du ou _ 1 ot
ugetv 3y = 5 By (2)

Introducing u = U - Uy V= Vo, where uy <<U,vl<< U, we obtain

as a first approximation the equation

_Um:}--a-:t- (23)
0x p Oy

Recause of the periodicity of the rod system, it seems convenient
to assume the following expression for uq ¢

\

u; = Af(x)cosay, (33
where @ has tc be chosen in such a manner that the period of uy

agrees with the distance N\ of the rods, i.e, a= 2n/\,

The expression for shear stress according to tha theory

of mixing length is

A
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The differential equation (2a) w:11l then be transformed into
u 2
o R i ,
§x T TR By 442 (2b)

where k = 202/ is a constant parameter,

3, The solution of the differential equation, If we

make the substitution

vy = KT F () (5)

with the condition Fl(O) g Ao may be interpreted as the ampli-
tude ctf the velocity distribution, and we get the following dif-

ferential equation
- 0 "
F1(y) = A K1 (y)F2(y) (2¢)

Assume now y = c¢n, where ¢ 1s a constant of the 4imension length,

we obtaln the folloving equation

Ak
F (en) = ;g— Fi(cq)F;(cq) (24)

wherz on the right side the differentiations are made with respect
to the variable n . As ¢ is arbitrary we choose it so that
2 =
Aok/c 1l
and obtain the differential equation
F. = Flep! (2e)

1 11
which, multiplied by Fi, results in

B E! = Fi2F; r21)

and once integrated
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where © is a constant of integration, which can be determined by
the condition that for y = 0 (n=0) Fy =1, and Fi = 0 or C = 1/2,

With thic value of C we get

13 - -3¢ _ 2 5
F1 2(1 Fl) (2r.)
From the substitution
Fi =4zl + 1, (6)

dr. = 622 dz/F1 = 6z2 dz/(1 + kz3)l/2

1 (6a)

the independent variable n is given bty

0
n =(m20I A, (7)

2 ;Ez3+l’

which 1s an elliptic integral of Velerstrass type., TO get a more
convenient exprescion for n and F, we introduce the parameter w

by means of the elliptic integral

9] dz (8)
W =
lfz (hz3-gzz-g3)1]é’
where the inverse function
z = p(w) (9)

is the elliptic p~-function of Welerstrass. Ry comparison of
the integrals (7) and (8), we see that in our case g, = O, By = -1,
From (8) and (9) one obtains

w
= (6)2/3‘r ° ptwiaw = (623 (¢ () - pw )] (72)

W

——
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where L8 corresponds tc z = O, u to an arbitrary value of z and
p(u) to the elliptic p-function of Weierstra:cs defined by the
integral

p(wo) = -J\p(w)dw

The function Fl(n) of velocity distribution is given by Eqs, (6)
and (9)

R G =funden ¢ 1) (6a)

On the other hand the derivative of the “Welcrstrass p-function
is given by
— 1/2
p'(w) =l upi(w) - gop(w) - g ) (10)
= J
so that the velocity distribution is given by

Fl(w) = pt(w) (6b)

Thus we have a representation of the variables Fy and 1 by mneans
of the common variable u, The result of the numerical calculation
is shown in Fig, 2 and is obttained by using the tables of the

Jacobisn elliptic functions by 1, M, Milne-Thomson (4], The p -

function of Welerstrass can be expressed ty the Jacobian elliwntic

function in the following manner

l+cn(2wH1/2)

plw) = ey ¥ H o ol 72y’ e
1/ 1/2

Sy = ~MH3/2 sn(2wH™"“)an(2wH™"") ’ (11a)

{-l-cn(Zle/Zi}z

where sn, ¢cn and dn are the Jacoblan eiliptie functions,

24
H2 =2 (02-e1)(e2-e3) = Qeg + ng
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and e, , €5y €y arc the roots of the equation

TEVE BoW = By T g

3
e~ being the real root, whereas e, and @y are complex, In our
case e, = 1A/ = -0,6300,
The independeni variable n is expressed by the ilntegral
of the p -function, i.e,
Yo l+cn 2le/2 A
N = 62/3 e, +4 ¢ )

b
d - Ley l-cn(2wH1/2) k2

The result is in close agreement with the results obtained by
simple quadrature of an equation corresponding to (7).,

The velocity distribution in the direction parallel to
the plarne of the rods, but perpendicular to their axes is given

y the equaticon of continuity

du ov

X ay
where according to Eq. (5)

du

5 %) p

5 = ~2A x Fl(y) (va)
and therefore

- 2 ;

vy = cA X lPFl\cq)dq (12a)

We now use the cxpressions of Fl(cq) from Eq. (6b), dnq from Eq,
(7) and z =p(w) from E¢. (9), obtaining

v, = 6273 nex™ Jp(w) plwiaw

-

(-2—)1/3 Aex™2 [pa(w) - p2(w0) ]

Expressing the p=-function by the Jacobian elliptic functions we

-1
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get a velocity dictribution in close agreement with that found

by simple quadrature (Fig. 3).

4, Sumnary, The velocity distribution tehind a system
of cylindrical egquidistant rods is found by using the expression
of L. Prandtl for the shear stress in turbulent motion (mixing
length theory). The solution of the differential equation is
given in terms of the elliptic fimnctions of leierstrass, which
for the numerical calculation are transformed to the elliptic
functions of Jacobi. The results are in close agreement with

those obtained earlier by simple quadrature.
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